abk1's scratched blog 3::AUDIO DIARY

コメントへの書き込み機能は停止していますので宜しくおねがいします。

Jun 28, 2022

earfluff and eyecandy によるJitterの解説 その2

前回に引き続き、earfluff and eyecandy によるJitterの解説について読んでいる。

Jitter – earfluff and eyecandy
http://www.tonmeister.ca/wordpress/category/jitter/

今回はPart 3から。

Jitter: Part 3 – Classifying Jitter

Jitter: Part 3 – Classifying Jitter
http://www.tonmeister.ca/wordpress/2018/08/09/jitter-part-3/

Part 2では、ジッターを位相ジッターと振幅ジッターという見方で分けた。
ここでは、別のジッターの分類について触れている。
以下、表にする。

total jitter random jitter
deterministic jitter
(correlated jitter)
periodic jitter
data-dependent jitter inter-symbol interference
duty cycle distortion
echo jitter

Part 4でRandom Jitter、Part 5でDeterministic Jitterについて説明がある。

日本のサイトで用語の解説がある。
random jitter(ランダム・ジッタ)、deterministic jitter(デターミニスティック・ジッタ)
Posted on 2014年12月24日
http://www.de-pro.co.jp/2014/12/24/8209/

Jitter: Part 4 – Random Jitter

Jitter: Part 4 – Random Jitter
https://www.tonmeister.ca/wordpress/2018/08/09/jitter-part-4-random-jitter/

You have a signal (the audio signal that has been encoded as a digital stream of 1’s and 0’s, sent through a device or over a wire as a sequence of alternating voltages) and some random noise is added to it for some reason… (Maybe it’s thermal noise in the resistors, or cosmic radiation left over from the Big Bang bleeding through the shielding of your S-PDIF cable, or something else… )

What we’re really talking about is that the jitter is modulating the signal that carries your audio signal – not the audio signal itself. This is an important distinction, so if that last sentence is a little fuzzy, read it again until it makes sense.

(translated by google)
信号(1と0のデジタルストリームとしてエンコードされ、デバイスを介して、または一連の交流電圧としてワイヤを介して送信されたオーディオ信号)があり、何らかの理由でランダムノイズが追加されています…(多分 それは、抵抗器の熱ノイズ、またはビッグバンから残った宇宙放射がS-PDIFケーブルのシールドを介して出血していることなどです…)

私たちが実際に話しているのは、ジッターがオーディオ信号自体ではなく、オーディオ信号を運ぶ信号を変調しているということです。これは重要な違いなので、最後の文が少し曖昧な場合は、意味がわかるまでもう一度読んでください。

1 Timing errors of the clock events relative to their ideal positions
2 Timing errors of the clock periods relative to their ideal lengths in time

These are very different – although they look very similar.

The first is an absolute measure of the error in the clock event – when did that single event happen relative to when it should have happened? Each event can be measured individually relative to perfection – whatever that is. This is called a Phase Modulation of the carrier. It has a Gaussian characteristic (which I’ll explain below…) and has no “memory” (which is explained first).

The second of these isn’t a measure of the events relative to perfection – it’s a measure of the amount of time that happened between consecutive events. This is called a Frequency Modulation of the carrier. It also has a Gaussian characteristic (which I’ll explain below…) but it does have a “memory” (which is explained using Figure 1).

(translated by google)
1 理想的な位置に関連するクロックイベントのタイミングエラー
2 時間の理想的な長さに対するクロック周期のタイミングエラー

これらは非常に異なりますが、見た目は非常に似ています。

1つ目は、クロックイベントのエラーの絶対的な測定値です。その単一のイベントは、発生するはずだった時期と比較して、いつ発生したのでしょうか。 各イベントは、それが何であれ、完璧に関連して個別に測定できます。これは 、搬送波の位相変調と呼ばれます。ガウス特性(以下で説明します…)があり、「メモリ」(最初に説明します)がありません。

これらの2つ目は、完全性に関連するイベントの測定値ではありません。これは、連続するイベント間で発生した時間の測定値です。これは、搬送波の周波数変調と呼ばれます。また、ガウス特性(以下で説明します…)がありますが、「メモリ」(図1を使用して説明)があります。

ちょっと引用だけではなんだかよく分からない。
元サイト原文のほうに図が掲載されている。しかし、ガウス分布は分かるんだけど、位相変調と周波数変調については、よく分からない。
位相変調は、その瞬間だけに影響するもので、周波数変調はその後の信号にも影響を与える(「記憶」と表現されている)ということらしい。
いろんな原因でランダムに生じるジッターがあり、その瞬間だけ影響するものと、後まで影響するものに分けられる、という理解で、とりあえずいいのかな。

Jitter: Part 5 – Deterministic Jitter

Jitter: Part 5 – Deterministic Jitter
https://www.tonmeister.ca/wordpress/2018/08/09/jitter-part-5-deterministic-jitter/

Deterministic jitter can be broken down into two classifications:

1 Jitter that is correlated with the data.
This can be the carrier, or possibly even the audio signal itself

2 Jitter that is correlated with some other signal
In the second case, where the jitter is correlated with another signal, then its characteristics are usually periodic and usually sinusoidal (which could also include more than one sinusoidal frequency – meaning a multi-tone), although this is entirely dependent on the source of the modulating signal.

(translated by google)
決定論的ジッタは、次の2つの分類に分類できます。

1 データと相関するジッタ。
これは、キャリア、または場合によってはオーディオ信号自体である可能性があります

2 他の信号と相関するジッタ
ジッタが別の信号と相関している2番目のケースでは、その特性は通常 周期的であり、通常は正弦波です(複数の正弦波周波数を含む場合もあります-マルチトーンを意味します)が、これは変調信号のソースに完全に依存します。

まず、決定論的ジッタはデータ依存ジッタと周期ジッタとに分けられるとのこと。
データ依存ジッタには、Intersymbol Interference(符号間干渉:ISI)、Duty Cycle Distortion(デューティ・サイクル歪み:DCD)、Echo Jitter(エコージッター)があるということで、ここではそれらを順番に説明している。

ランダムジッタは予測不能だけど、決定論的ジッタは瞬間毎にどのように動作するかを「予測可能」とのこと。予測可能というのは、僕には意外だった。たぶん僕が考える予測と、サイトオーナーが記載している予測は、どこか意味が違うんだろうと思う。
読んでいて、僕が持っているジッターのイメージに説明内容が近いものは理解しやすかったような気がする。気がするというのは、本当に分かったのかどうかがおぼつかないからだ。
イメージがつかめないものは、分かりにくい。

データ依存のジッター

Data-Dependent Jitter

Data-dependent jitter occurs when the temporal modulation of the carrier wave is somehow correlated to the carrier itself, or the audio signal that it contains. In fact, we’ve already seen an example of this in the first posting in this series – but we’ll go through it again, just in the interest of pedantry.
We can break data-dependent jitter down into three categories, and we’ll look at each of these:

(translated by google)
データ依存のジッタは、搬送波の時間変調が搬送波自体、または搬送波に含まれるオーディオ信号と何らかの形で相関している場合に発生します。実際、このシリーズの最初の投稿でこの例をすでに見てきましたが、衒学者のためだけに、もう一度説明します。
データに依存するジッターを3つのカテゴリに分類でき、それぞれを見ていきます。

データ依存って何だと思うけど、データ信号そのものに乗るジッターで、以下の3つに分類されるということらしい。
しかし、本当に3つだけなのか?と考えてしまう自分がいる、、、たぶん何か分かっていないのだ。

符号間干渉

ケーブルで伝送されるうちに、信号の方形波の波形が崩れていくということらしい。
理想のケーブルは現実には存在しないからとのこと。
参考:
https://en.wikipedia.org/wiki/Intersymbol_interference

デューティサイクル歪み

If your transmission system is a little inaccurate, then it could have an error in controlling the duty cycle of the pulse wave. Basically, this means that it makes the transitions at the wrong times for some reason, thus creating a jittered signal before it’s even transmitted.

(translated by google)
伝送システムが少し不正確な場合は、脈波のデューティサイクルの制御にエラーが発生する可能性があります。基本的に、これは、何らかの理由で間違ったタイミングで遷移を行うことを意味します。したがって、送信される前にジッター信号が作成されます。

これは正直良く分からない。
技術実装の問題なんだろうか。
参考:
https://en.wikipedia.org/wiki/Duty_cycle

思い当たるのは、音源を置くHDDによって音が違うというような事象のことを言っているのかもしれない。違うかもしれないけど。

エコージッター

What many people don’t know is that, if you stand in a long corridor or a tunnel with an open end, you will also hear an echo, bouncing off the open end of the tunnel. It’s not intuitive that this is true, since it looks like there’s nothing there to bounce off of, but it happens. A sound wave is reflected off of any change in the acoustic properties of the medium it’s travelling through. So, if you’re in a tunnel, it’s “hard” for the sound wave to move (because there aren’t many places to go) and when it gets to the end and meets a big, open space, it “sees” this as a change and bounces back into the tunnel.

Basically, the same thing happens to an electrical signal. It gets sent out of a device, runs down a wire (at nearly the speed of light) and “hits” the input of the receiver. If that input has a different electrical impedance than the output of the transmitter and the wire (on other words, if it’s suddenly harder or easier to push current through it – sort of….) then the electrical signal will (partly) be reflected and will “bounce” back down the wire towards the transmitter.

(translated by google)
多くの人が知らないのは、長い廊下や開放端のあるトンネルに立つと、トンネルの開放端で跳ね返るエコーも聞こえるということです。跳ね返る物が何もないように見えるので、これが真実であるというのは直感的ではありませんが、それは起こります。音波は、通過する媒体の音響特性の変化によって反射されます。したがって、トンネル内にいる場合、音波が移動するのは「困難」であり(移動する場所が少ないため)、音波が終わりに到達して大きなオープンスペースに出会うと、音波は「見えます」。これは変更としてトンネルに跳ね返ります。

基本的に、同じことが電気信号にも起こります。それはデバイスから送信され、(ほぼ光速で)ワイヤーを伝わり、レシーバーの入力に「ヒット」します。その入力が送信機とワイヤーの出力とは異なる電気インピーダンスを持っている場合(言い換えると、電流を押し込むのが突然困難または容易になった場合-ある種…。)、電気信号は(部分的に)反射され、送信機に向かってワイヤーを「バウンス」します。

エコージッターはインピーダンスの問題で生じるらしい。
デジタルケーブルのインピーダンスを合わせるのは大事なことらしい。

周期性ジッター

Periodic Jitter

We press play on the CD, and the audio signal, riding on the S-PDIF carrier wave is sent through our cable to the DAC. However, the signal that reaches the DAC is not only the S-PDIF carrier wave, it also contains a sine wave that is radiating from a nearby electrical cable that is powering the fridge…

CDの再生を押すと、S-PDIF搬送波に乗ったオーディオ信号が、ケーブルを介してDACに送信されます。ただし、DACに到達する信号は、S-PDIF搬送波であるだけでなく、冷蔵庫に電力を供給している近くの電気ケーブルから放射されている正弦波も含まれています…

周期性ジッターについて最後に書かれている。
データ信号とは関係がなく、他の信号と相関するジッタで、多くは周期的に変動するということだ。
冷蔵庫のコンセントにノイズ対策したらコンポの音が良くなったというような、世間では都市伝説めいた扱いをされているあれである。うちの冷蔵庫にもノイズフィルターをかませている。
そうした外来ノイズによって生じるジッターや、システム内でも取り切れなかったノイズとか(電源のノイズとかかな、、)、そうしたものということのようだ。

紛らわしいので一応、書いておく。「Periodic Jitter」は、クロックジッターなどで説明される「周期ジッター(Period jitter / Cycle Jitter)」とは、別物?らしい。
ここらはまだよく分からない。
ジッターは切り取り方によって呼び方がころころ変わるようで、そういうのも分かりにくい原因だと思う。

分かりやすい例から何を言ってるのか分からないようなものまで、ジッターの原因には色々ある。
エントリーの最後に、これらの影響がデジタル信号に積み重なったらどんな影響があるかを図にしている。

Part 6以降は、また切り口が変わるので、今回はここまで。

Posted at 17:06 in audio_diary | WriteBacks (0) | Edit Tagged as:
WriteBacks
TrackBack ping me at
http://blown-lei.net/endive/blosxom.cgi/audio_diary/20220628b-jitter2.trackback
Post a comment

writeback message:
Caution!!!
Now, Anyone cannot post a comment.















Search


Advanced Search

Recent entries from same category
  1. PPAPで44.1kHzを再見する
  2. オーディオ状況報告(2025.04.20.)
  3. LAN ネットワークを見直してみた 7-2(GS105EによるVLANの挙動について - 13日、追記)
  4. LAN ネットワークを見直してみた 7(GS105EでポートベースVLANを使ってみる)
  5. MQAメモ
  6. LAN ネットワークを見直してみた 6(ハブについて現時点でのまとめ + NASの移動)
  7. LAN ネットワークを見直してみる 5(Walter Tilgner / Whispering Forest を巡る顛末)
  8. LAN ネットワークを見直してみる 4 (18日、19日に追記)
  9. LAN ネットワークを見直してみる 3
  10. LAN ネットワークを見直してみる 2
  11. オーディオ状況報告(2025.01.03.)
  12. テストシステムのPPAPで、44.1kHzを鳴らしてみる
  13. RoonとQobuzをやめた、他いくつか
  14. 書くことが無いので、libsamplerate (SRC) によるアップサンプリングの設定変更で音質が変わるかどうかを確認した
  15. オーディオ状況報告(2024.07.15.)
  16. 新しいLMSとDaphileとDeezerプラグインについてメモ
  17. 古いRaspberry PiをRoon、Mpd、UPnPとかで使おうとしたら
  18. Raspberry Pi 3B+をRoon Bridgeにする
  19. Logitech Media ServerのUPnP pluginとmpdの設定を見直した
  20. Mac mini (2010 mid)でFedoraが動くようになったので
  21. Logitech Media Serverを整理する
  22. Logitech Media ServerをMac miniにインストールして新しいDeezerプラグインを試みる
  23. DaphileでDeezerの再生ができなくなるので(3月25日、追記)
  24. オーディオ状況報告(2024.01.21.)31日追記:Deezerが使えなくなる
  25. ストレージ
  26. mpdサーバーに銅メッシュを仕込んでみる(17日、追記)
  27. アップサンプリングの設定を変えてmpdサーバーの負荷を減らしてみる
  28. Daphileサーバーに銅メッシュを組み込んでみる
  29. NASが壊れた
  30. 銅素材でPCトランスポート筐体内のノイズ対策を試みる(10月7日、追記)
  31. I try Roon on Linux
  32. オーディオ状況報告(2023.08.03.)
  33. LAN ネットワークを見直してみる
  34. オーディオ状況報告(2023.06.28.)
  35. HP Probook 450 G9, mpd, libsamplerateで高品質アップサンプリングを試みる(6月1日、4日、追記)
  36. 最新ノートPCで起動できるTiny Core 64 mpdサーバーを過去の資産の切り貼りで作る
  37. 最新のノートPCを最新のTiny Core 64で起動する
  38. リッピング(17日、追記)
  39. なぜpiCorePlayerとM500でMQAを再生すると、音が途切れることがあるのだろう
  40. Deezer hifiのMQAをDaphile、piCorePlayerで再生する(追記:WiFiでつなぐことにした)
  41. resampler {type "Best Sinc Interpolator"} 192kHzってどうなんだろう
  42. resampler {type "Best Sinc Interpolator"} を試してみるべきかも・・・(7日、追記あり)
  43. earfluff and eyecandy によるJitterの解説 その1
  44. earfluff and eyecandy によるJitterの解説 その3
  45. TAS Super LP List と TAS Super Download List
  46. Ras Pi B+とpiCore13.1でPPAP Back Endを作ってみたけど
  47. オーディオ状況報告(2022.05.28.)
  48. Behringer MONITOR1の性能を確認する(5月24日、追記)
  49. いわゆる直結を試みる
  50. DVDドライブで聴くCDの音が良いような
  51. DaphileでMQAデータをpiCorePlayerに転送再生する
  52. Daphile 設定関係の覚え書き
  53. オーディオ状況報告(2022.01.20.)
  54. カーステレオにRas Pi2+piCore7+MPD+i2s DAC (追記 10月31日、11月03日)
  55. オーディオ状況報告(2021.09.05.)
  56. PPAP Back-Endをタンデム化
  57. ネットワーク上のサーバー運用を再考する
  58. pulseaudioでMQAデータを転送再生する
  59. DAC/アンプの切り替えケーブルによる音質変化ついて
  60. オーディオ状況報告(2021.06.14. 06.18. 追記あり)
  61. DAC/アンプの切り替え盤を設えてみた
  62. Musician Pegasus R2R DACを入手した(12.01. 12.07. 追記)
  63. mpdでCD再生に対応する(2022.03.29./.08.16./2025.04.08. 追記)
  64. オーディオ状況報告(2021.05.02.)
  65. アップしたイメージのPPAPへの転用についてPhile Webに記載した(2022.06.21. 追記:Phile Webサービス終了にて記載内容を転載した)
  66. イメージファイルをアップするにあたって、うちのセットからの変更点
  67. UPnPレンダラー兼アップサンプリングサーバーのディスクイメージをアップした
  68. DaphileにNASをマウントしてみる(cue sheetが使える!)
  69. オーディオ状況報告(2021.04.04. もうちょっと整理したい)
  70. DaphileとTiny CoreでDeezer hifiを768kHzにアップサンプリングする(ついでにPPAPで飛ばす - たびたび追記あり)
  71. DaphileとVolumio 1.55でDeezer hifiをアップサンプリングする
  72. DaphileとpiCorePlayerでDeezer hifiを聴いてみる
  73. PulseaudioによるLan経由音声データ転送のデータ量が大きすぎる(未解決案件)
  74. Deezer Web Player使用をサポートするデータベースを運用してみる
  75. ソフトを起動する順番を変えてみる ~ pulseaudioによる音声データ転送 使い方まとめ(2021.01.31. 06.26. 追記)
  76. pulseaudio クライアントのFirefoxを強化する
  77. オーディオ状況報告(2020.11.22.)
  78. pulseaudioサーバーを強化する(その2:12月11日、追記あり)
  79. pulseaudioサーバーを強化する(10月24、25日、11月01、05、10日、追記あり)
  80. ストリーミング音源をpulseaudioで転送しアップサンプリング再生する(10月15日、追記)
  81. 音楽ストリーミングサービス覚書
  82. Pulseaudioの備忘録
  83. 音楽ストリーミングサービスのウェブプレーヤーを使う
  84. Pulseaudioを使ってRaspberry piにAmazon Prime Musicを転送再生する(9月8日追記)
  85. 引き続き、hwとplughwについて
  86. PPAP back-Endの設定を考え直す(hwとplughw)(8月20日追記)
  87. オーディオ状況報告(2020.08.07.)
  88. バランス接続に業務用アッテネーターを試す
  89. Brooklyn AmpでSM-SX100の代替を試みる(07.14. 2022.02.24. 追記)
  90. 手持ちのアンプでSM-SX100の代替を試みる
  91. SMSL M500でMQAを聴いてみた(10.26. 追記あり)
  92. ジッター再々考
  93. サンプリングパラメータによるジッターの影響の差異について
  94. 今更だがpiCore7を復帰させる
  95. 700kHz台でPPAP 複数のFrontを使い分ける(2020.05.01、2023.06.22 追記)
  96. 700kHz台でPPAP(22日、4月7日追記)
  97. オーディオ状況報告(2020.03.08.)
  98. コンデンサーと抵抗と銅板による仮想アース(1月23日、26日、2月10日、16日、22日、27日、3月1日、8日追記)
  99. GNDについての考察してもわけがわからない
  100. コンデンサーと抵抗による仮想アースと銅板(追記あり)
  101. Lascia la spina (2021.04、2022.11 追記あり)
  102. コンデンサーと抵抗による仮想アース
  103. apu2で、Tiny CorePure64-10.1にmpd(0.20、0.21)をインストールする(その4:動作確認)
  104. apu2で、Tiny CorePure64-10.1にmpd(0.20、0.21)をインストールする(その3:0.21 インストール)
  105. apu2で、Tiny CorePure64-10.1にmpd(0.20、0.21)をインストールする(その2:0.20 インストール)
  106. apu2で、Tiny CorePure64-10.1にmpd(0.20、0.21)をインストールする(その1:準備)
  107. LANに機械をつなぐということについて
  108. apu2d4でTiny CorePure64 10.1を動かす
  109. だんだん秋になってくる
  110. ケーブルインシュレーターをコンセントに使う
  111. 久しぶりにインシュレーターを追加する
  112. オーディオ状況報告(2019.05.03.)
  113. 歌声の録音について自分なりに考えた
  114. アップサンプリングについて色々
  115. オーディオ状況報告(2018.12.30.)
  116. Compaq 6730bとTiny coreでアップサンプリング (768kHzアップサンプリングの音について)
  117. apu2c4で768kHzへのアップサンプリングに取り組む
  118. ADI-2 DACとpiCoreで、384kHz以上を鳴らしてみる
  119. raspberry piをncmpcppサーバーに仕立ててみた
  120. RME ADI-2 DACを導入した
  121. fireface UCXの電源をiPowerに替えてみた
  122. USB電源用のDCノイズフィルターを作ってみた
  123. ようやくNASを追加した
  124. piCoreのonboot.lstを編集してタスク軽減を目指す
  125. PPAP (piped pcm audio play) 関連サイトアドレス集
  126. piCore7で作るPPAP Front
  127. piCore7で作るPPAP Back-End (2020.08.16.追記)
  128. PPAP Back-EndのUSB出力が48kHzになっていたので修正した(2020.08.16.追記)
  129. RAMメモリ再生とppap(piped PCM audio play)を比較した
  130. オーディオ状況報告(2018.04.12.)
  131. 今一度、44.1/16を聴き比べる
  132. MPDのアップサンプリングによる音への影響を確認してみる(SoXとLibsamplerateを比較する)
  133. piCore7でppap (piped pcm audio play)を試みる(05.22、2020.08.16、追記)
  134. ppap (piped pcm audio play)を試みるが、一筋縄に行かない、、、
  135. piCore7にmpdをインストールする方法
  136. オーディオ状況報告(2017.12.24.)
  137. 赤い鳥の音源について思ったこと
  138. fireface UCXについて再び(不覚だった、、、)
  139. オーディオ状況報告とか、いろいろ(2017.10.22. USB029H2RP導入など)
  140. ノイズ対策をあれこれやると音がずいぶん変わってしまった(11月21日USBターミネーターについて追記)
  141. fireface UCXについて(2017.09.05.追記あり)
  142. オーディオ状況報告(2017.07.05.)
  143. ハイレゾとアップサンプリング、384kHz周辺をいろいろと聴いてみた(7月2日、追記)
  144. Moode Audio3.1 384kHz/24bit i2sDACで、メモリ再生を試みる
  145. Moode Audio3.1にlibsamplerateをインストールして384kHzでi2s出力する
  146. オーディオ趣味の課題 備忘録
  147. Fishmans がリマスターで再発されたので1stアルバムを聴いてみた(2017.09.05.追記あり)
  148. mpdからmpdにflacをHTTPストリーミング機能で配信する
  149. mpdのHTTPストリーミング機能でflacを配信してみる(24日追記)
  150. MinimServerをRaspberry Pi B+で動かしてみた(24日追記)
  151. Volumioにマウントした時に機能するシンボリックリンクを作りたい
  152. VolumioをUPnP/DLNAで繋いでみた(1月4日、追記あり)
  153. UPnP/DLNAは難しかった(volumioをupnpで繋いだので追記した)
  154. オーディオ状況報告(2016.11.24.)
  155. JPLAYの音を聴いてみるなど
  156. Raspberry Piとi2sボードでのアップコンバートについて雑感
  157. mpd + SoXによるアップコンバートについて (Ras pi2用のpiCore7にはmpdのインストールが簡単にできる - 追記あり)
  158. mpd + libsamplerateによるアップコンバートについて(2021.04. 追記あり)
  159. ハイレゾを作って再生してみる、など (追記:アップコンバートすることにした)
  160. オーディオ状況報告(2016.06.14.)
  161. Raspberry Pi でメモリ再生を試みる2(raspbianにmpdをインストールする)
  162. Raspberry Pi でメモリ再生を試みる(piCore7にmpdをインストールする)-いろいろ追記あり
  163. NASの中のcue sheetの中を検索する
  164. Volumioのカーネルをバージョンアップしてみる(追記あり、さらに追記あり)
  165. Volumio 1.55 をいじってみる
  166. Raspberry pi B+ / Volumio 1.55 の運用状況
  167. VolumioのSDカード領域を拡張したのでメモ 追記:USBポートの電流出力上限を変更した
  168. 転居後の状況
  169. 引っ越した
  170. I2S DACとRaspberry Pi B+を導入 - Volumioでcue sheetを使う方法
  171. オーディオ状況報告(2014.10.01.)
  172. 加入者網終端装置(CTU)の設定でネットワークを分割する
  173. audio_output_formatについて(Vine Mpd ppcについて覚書-13)
  174. NASの入れ替え
  175. EACの覚書(2019年追記)
  176. Vine Mpd ppcについて覚書(12)デーモンの刈り込み
  177. Vine Mpd ppcについて覚書(11)mpd.conf : audio_buffer_sizeとbuffer_before_play
  178. Vine Mpd ppcについて覚書(10)NASのマウントについて
  179. オーディオ状況報告
  180. Vine Mpd ppcについて覚書(9)twmについて(2014.03.14.追記)
  181. Vine Mpd ppcについて覚書(8)サンプリング周波数とビットレートの変更+追記:mpd.confの設定
  182. Vine Mpd ppcについて覚書(7)というよりEACの設定について
  183. Vine Mpd ppcについて覚書(6)不良cue sheetによる再生の不具合
  184. Vine Mpd ppcについて覚書(5)alsa関連で要らないものを入れすぎていた
  185. Vine Mpd ppcについて覚書(4)ncmpcppのインストール
  186. Vine Mpd ppcについて覚書(3)ncmpcppの設定
  187. Vine Mpd ppcについて覚書(2)mpdのインストール
  188. Vine Mpd ppcについて覚書(1)前書き・OS選択
  189.  オーディオ状況報告
  190. 4年前との違い
  191. ファイルオーディオ現状
  192. ザ・ビートルズBOX USBをEMI Japanから買った
  193. abk1
  194. Magic Dreamの使いこなし顛末
  195. Magic Dreamと黒檀コロの比較
  196. Magic Dream、ようやく使ってみた
  197. Magic Dream、とりあえず使ってみた/ゴムシートの効果
  198. Magic Dream
  199. Audio Diary

May
Sun Mon Tue Wed Thu Fri Sat
       
29

abk1's scratched blog 3::AUDIO DIARY

Categories
Archives

ABK1s HOMEPAGE::audio diary ~2006

Search


Syndicate AUDIO DIARY (XML)
Syndicate this site (XML)

Powered by
blosxom 2.0
and
modified by
blosxom starter kit